
Design and Analysis of Algorithms
Dynamic Programming (II)

1 Chain Matrix Multiplication

2 Optimal Binary Search Tree

1 / 34



Outline

1 Chain Matrix Multiplication

2 Optimal Binary Search Tree

2 / 34



Chain Matrix Multiplication (矩阵链相乘)

Motivation. Suppose we want to multiply several matrices. This
will involve iteratively multiplying two matrices at a time.

Matrix multiplication is not commutative (in general
A×B ̸= B ×A), but it is associative:

A× (B × C) = (A×B)× C

We can compute product of matrices in many different ways,
depending on how we parenthesize it.

Are some of these better than others?

Complexity of Cik = Aij ×Bjk

Each element in C requires j multiplications, totally ik
elements ⇒ overall complexity Θ(ijk)

3 / 34



Example

Suppose we want to multiply four matrices, A×B × C ×D, of
dimensions 50× 20, 20× 1, 1× 10, and 10× 100, respectively.

Parenthesize Computation Cost
A× ((B × C)×D) 20 · 1 · 10 + 20 · 10 · 100 + 50 · 20 · 100 120, 200

(A× (B × C))×D 20 · 1 · 10 + 50 · 20 · 10 + 50 · 10 · 100 60, 200

(A×B)× (C ×D) 50 · 20 · 1 + 1 · 10 · 100 + 50 · 1 · 100 7, 000

The order of multiplication order makes a big difference in the final
complexity.
Natural greedy approach of always perform the cheapest matrix
multiplication available may not always yield optimal solution

see second parenthesization as a counterexample

4 / 34



Example

Suppose we want to multiply four matrices, A×B × C ×D, of
dimensions 50× 20, 20× 1, 1× 10, and 10× 100, respectively.

Parenthesize Computation Cost
A× ((B × C)×D) 20 · 1 · 10 + 20 · 10 · 100 + 50 · 20 · 100 120, 200

(A× (B × C))×D 20 · 1 · 10 + 50 · 20 · 10 + 50 · 10 · 100 60, 200

(A×B)× (C ×D) 50 · 20 · 1 + 1 · 10 · 100 + 50 · 1 · 100 7, 000

The order of multiplication order makes a big difference in the final
complexity.

Natural greedy approach of always perform the cheapest matrix
multiplication available may not always yield optimal solution

see second parenthesization as a counterexample

4 / 34



Example

Suppose we want to multiply four matrices, A×B × C ×D, of
dimensions 50× 20, 20× 1, 1× 10, and 10× 100, respectively.

Parenthesize Computation Cost
A× ((B × C)×D) 20 · 1 · 10 + 20 · 10 · 100 + 50 · 20 · 100 120, 200

(A× (B × C))×D 20 · 1 · 10 + 50 · 20 · 10 + 50 · 10 · 100 60, 200

(A×B)× (C ×D) 50 · 20 · 1 + 1 · 10 · 100 + 50 · 1 · 100 7, 000

The order of multiplication order makes a big difference in the final
complexity.
Natural greedy approach of always perform the cheapest matrix
multiplication available may not always yield optimal solution

see second parenthesization as a counterexample

4 / 34



Brute Force Algorithm

Q. How many different parenthesization methods (add brackets)
for A1A2 . . . An?

Observation. A particular parenthesiation can be represented
naturally by a full binary tree

leaves nodes: individual matrices
the root node: final product
interior nodes: intermediate products

D

C

A B

((A×B)× C)×D

A

D

B C

A× ((B × C)×D)

5 / 34



Brute Force Algorithm

Q. How many different parenthesization methods (add brackets)
for A1A2 . . . An?
Observation. A particular parenthesiation can be represented
naturally by a full binary tree

leaves nodes: individual matrices
the root node: final product
interior nodes: intermediate products

D

C

A B

((A×B)× C)×D

A

D

B C

A× ((B × C)×D)

5 / 34



Estimate the Number of Possible Orders

The number of possible orders correspond to various full binary
trees with n leaves.
Let C(n) be the number of full binary tree with n+ 1 leaves, or,
equivalently, with total n internal nodes:

C(0) = 1, C(1) = 1, C(2) = C(0)C(1) + C(1)C(0)

C(3) = C(0)C(2) + C(1)C(1) + C(2)C(0)

Cn =

n−1∑
i=0

CiCn−1−i =
1

n+ 1

(
2n

n

)
The above formula is of convolution form, can be calculated via
generating function.

The result is known as Catalan number, which is exponential
in n

6 / 34



Catalan Number

Catalan number (named after the Belgian mathematician Eugène
Charles Catalan).

First discovered by Euler when counting the number of
different ways of dividing a convex polygon with n sides into
(n− 2) triangles.

C(n) =Ω

(
1

n+ 1

(2n)!

n!n!

)
//Stirling formula

=Ω

(
1

n+ 1

√
2π2n

(
2n
e

)2n
√
2π2n

(
n
e

)n√
2π2n

(
n
e

)n
)

= Ω(4n/(n3/2√π))

7 / 34



Brute Force Algorithm

Catalan number Occur in various counting problems (often
involving recursively-defined objects)

number of parenthesis methods
number of full binary trees
number of monotonic lattice paths

Since Catalan number is exponential in n ; we certainly cannot
try each tree, with brute force thus ruled out.

We turn to dynamic programming.

8 / 34



Dynamic Programming
The correspondence to binary tree is suggestive: for a tree to be
optimal, its subtrees must be also be optimal ⇒ satisfy optimal
substructure (has somewhat locality) ; do not have to try each
tree from scratch

subproblems corresponding to the subtrees: products of the
form Ai ×Ai+1 × · · ·Aj

Optimized function:
C(i, j) = minimum cost of multiplying Ai ×Ai+1 × · · ·Aj

the corresponding dimension is mi−1,mi, . . . ,mj

Iteration relation:

C(i, j) =

{
0 i = j
mini≤k<j{C(i, k) + C(k + 1, j) +mi−1mkmj} i < j

Ai . . . Ak Ak+1 . . . Aj

mi−1 ×mk mk ×mj

9 / 34



Some Remarks

Key points of DP
Define subproblems
Find iterative optimal substructure among subproblems
Compute the subproblems in the right order

Sometimes the relation among subproblems may misleading.
One should interpret and compute it in the right way, i.e.,
iterative.

10 / 34



Recursive Approach (inefficient)

Algorithm 1: MatrixChain(C, i, j) // subproblem [i, j]

1: C(i, i) = 0, C(i, j)←∞;
2: s(i, j)← ⊥ //record split position;
3: for k ← i to j − 1 do
4: t← MatrixChain(C, i, k) + MatrixChain(C, k + 1, j) +

mi−1mkmj ;
5: if t < C(i, j) then //find better solution
6: C(i, j)← t;
7: s(i, j)← k;
8: end
9: end

10: return C(i, j);

11 / 34



Complexity Analysis

Recurrence relation is:

T (n) =

{
O(1) n = 1∑n−1

k=1(T (k) + T (n− k) +O(1)) n > 1

O(1): sum and compare
T (n) =

∑n−1
k=1 T (k)+

∑n−1
k=1 T (n−k)+O(n) = 2

∑n−1
k=1 T (k)+O(n)

Claim. T (n) = Ω(2n−1)

Induction basis: n = 2, T (2) ≥ c = c12
2−1, let c1 = c/2.

Induction step: P (k < n)⇒ P (n).

T (n) =O(n) + c12

n−1∑
k=1

2k−1 //induction premise

≥O(n) + c12(2
n−1 − 1) = Ω(2n−1) //geometric series

essentially same as brute force algorithm
12 / 34



Root of Inefficiency (Case n = 5)

different subproblems 15 vs. computing subproblems 81

13 / 34



Root of Inefficiency (Case n = 5)

different subproblems 15 vs. computing subproblems 81

13 / 34



Iterative Approach (efficient)

size = 1: n different subproblems
C(i, i) = 0 for i ∈ [n] (no computation cost)

size = 2: n− 1 different subproblems
C(1, 2), C(2, 3), C(3, 4), . . . , C(n− 1, n)

. . .

size = i: n− i+ 1 different subproblems
. . .

size = n− 1: 2 different subproblems
C(1, n− 1), C(2, n)

size = n: original problem
C(1, n)

14 / 34



Demo of n = 8

A1 A2 A3 A4 A5 A6 A7 A8

size = 2

size = 3

size = 4

size = 5

size = 6

size = 7

size = 8

15 / 34



Algorithm 2: MatrixChain(C, n)
1: C(i, i)← 0, C(i, j)i ̸=j ← +∞;
2: for ℓ← 2 to n do //size of subproblem
3: for i = 1 to n− ℓ+ 1 do //left boundary i
4: j ← i+ ℓ− 1 //right boundary j;
5: for k ← i to j − 1 do //try all split position
6: t← C(i, k) + C(k + 1, j) +mi−1mkmj ;
7: if t < C(i, j) then
8: C(i, j)← t, s(i, j) = k //update
9: end

10: end
11: end
12: end

Algorithm 3: Trace(s, i, j) //initially i = 1, j = n

1: if i=j then return;
2: output k ← s(i, j), Trace(s, i, k), Trace(s, k + 1, j);

16 / 34



Complexity Analysis

According to the algorithm
line 2: subproblem size
line 3: the left boundary of subproblem (the right boundary is
fixed in turn)
line 5: try all split position to find the optimal break point
Line 2, 3, 5 constitute three-fold loop, length of each loop is
O(n); the cost in the inner loop is O(1) ; complexity O(n3)

According to the memo
there are totally n2 elements in the memo, to determine the
value of each element, try and comparison cost is O(n) ;
complexity O(n3)

Trace complexity: n− 1 (number of interior nodes)

17 / 34



Complexity Analysis

According to the algorithm
line 2: subproblem size
line 3: the left boundary of subproblem (the right boundary is
fixed in turn)
line 5: try all split position to find the optimal break point
Line 2, 3, 5 constitute three-fold loop, length of each loop is
O(n); the cost in the inner loop is O(1) ; complexity O(n3)

According to the memo
there are totally n2 elements in the memo, to determine the
value of each element, try and comparison cost is O(n) ;
complexity O(n3)

Trace complexity: n− 1 (number of interior nodes)

17 / 34



Complexity Analysis

According to the algorithm
line 2: subproblem size
line 3: the left boundary of subproblem (the right boundary is
fixed in turn)
line 5: try all split position to find the optimal break point
Line 2, 3, 5 constitute three-fold loop, length of each loop is
O(n); the cost in the inner loop is O(1) ; complexity O(n3)

According to the memo
there are totally n2 elements in the memo, to determine the
value of each element, try and comparison cost is O(n) ;
complexity O(n3)

Trace complexity: n− 1 (number of interior nodes)

17 / 34



Example

Matrix chain. A1A2A3A4A5, A1 : 30× 35, A2 : 35× 15,
A3 : 15× 5, A4 : 5× 10, A5 : 10× 20

ℓ = 2 C(1, 2) = 15750 C(2, 3) = 2625 C(3, 4) = 750 C(4, 5) = 1000

ℓ = 3 C(1, 3) = 7875 C(2, 4) = 4375 C(3, 5) = 2500

ℓ = 4 C(1, 4) = 9375 C(2, 5) = 7125

ℓ = 5 C(1, 5) = 11875

ℓ = 2 s(1, 2) = 1 s(2, 3) = 2 s(3, 4) = 3 s(4, 5) = 4

ℓ = 3 s(1, 3) = 1 s(2, 4) = 3 s(3, 5) = 3

ℓ = 4 s(1, 4) = 3 s(2, 5) = 3

ℓ = 5 s(1, 5) = 3

s(1, 5)⇒(A1A2A3)(A4A5)

s(1, 3)⇒A1(A2A3)

optimal computation order: (A1(A2A3))(A4A5)

minimum multiplication: C(1, 5) = 11875

18 / 34



Outline

1 Chain Matrix Multiplication

2 Optimal Binary Search Tree

19 / 34



Binary Search Tree

Let S be an ordered set with elements x1 < x2 < · · · < xn. To
admit efficient search, we store them on the nodes of a binary tree.
Search: If x ∈ S, output the index. Else, output the interval.

1 2 3 4 5 6

x = 3.5

x vs. root
x < root, enter left subtree;
x > root, enter right subtree;
x = root, halt and output x;

x reaches leave nodes, halt, outputs
⊥.

4

2 6

1 3 5 L6

L0 L1 L2 L3 L4 L5

20 / 34



The Distribution of Search Element

When x
R←− S ⇒ balance binary tree is optimal

What if the distribution of x is not uniform?
Let S = (x1, . . . , xn). Consider intervals (x0, x1), (x1, x2), . . . ,
(xn−1, xn), (xn, xn+1), where x0 = −∞, xn+1 = +∞

Pr[x = xi] = bi, Pr[x ∈ (xi, xi+1)] = ai

The distribution of x over S ∪ S̄ is

P = (a0, b1, a1, b2, a2, . . . , bn, an)

Example: S = (1, 2, 3, 4, 5, 6). The distribution P of x is

(0.04, 0.1, 0.01, 0.2, 0.05, 0.2, 0.02, 0.1, 0.02, 0.1, 0.07, 0.05, 0.04)

x = 1, 2, 3, 4, 5, 6: 0.1, 0.2, 0.2, 0.1, 0.1, 0.05
x lies at interval: 0.04, 0.01, 0.05, 0.02, 0.02, 0.07, 0.04

21 / 34



Binary Search Tree 1

4

2 6

1 3 5 L6

L0 L1 L2 L3 L4 L5

S = (1, 2, 3, 4, 5, 6)

(0.1, 0.2, 0.2, 0.1, 0.1, 0.05)

(0.04, 0.01, 0.05, 0.02, 0.02, 0.07, 0.04)

Average search times:

A(T1) =[1× 0.1 + 2× (0.2 + 0.05) + 3× (0.1 + 0.2 + 0.1)]

+ [3× (0.04 + 0.01 + 0.05 + 0.02 + 0.02 + 0.07)

+ 2× 0.04]

=1.8 + 0.71 = 2.51

22 / 34



Binary Search Tree 2

1

L0 2

4L1

3 6

L2 L3
5

L4 L5

L6

S = (1, 2, 3, 4, 5, 6)

(0.1, 0.2, 0.2, 0.1, 0.1, 0.05)

(0.04, 0.01, 0.05, 0.02, 0.02, 0.07, 0.04)

Average search times:
A(T2) =[1× 0.1 + 2× 0.2 + 3× 0.1 + 4× (0.2 + 0.05) + 5× 0.1]

+ [1× 0.04 + 2× 0.01 + 4× (0.05 + 0.02 + 0.04)

+ 5× (0.02 + 0.07)] = 2.3 + 0.95 = 3.25
23 / 34



Formula of Average Search Time

Set S = (x1, x2, . . . , xn)

Distribution P = (a0, b1, a1, b2, . . . , ai, bi+1, . . . , bn, an)
the depth of xi in T is d(xi), i = 1, 2, . . . , n.

depth is counted from 0
the k-level node requires k + 1 times compare

the depth of interval Ij is d(Ij), j = 0, 1, . . . , n.

Average Search Time

A(T ) =

n∑
i=1

bi(1 + d(xi)) +

n∑
j=0

ajd(Ij)

When the depth of all nodes increase by 1, the average search time
increases by:

n∑
i=1

bi +

n∑
j=0

aj

24 / 34



Modeling of Optimal Search Tree

Problem. Given set S = (x1, x2, . . . , xn) and distribution of search
element P = (a0, b1, a1, b2, a2, . . . , bn, an)，

Goal. Find an optimal binary search tree (with minimal average
search times)

25 / 34



Dynamic Programming

Subproblems: defined by (i, j), i is the left boundary, j is the right
boundary

dataset: S[i, j] = (xi, xi+1, . . . , xj)

distribution: P [i, j] = (ai−1, bi, ai, bi+1, . . . , bj , aj)

Input instance: S = (A,B,C,D,E)

P = (0.04, 0.1, 0.02, 0.3, 0.02, 0.1, 0.05, 0.2, 0.06, 0.1, 0.01)

Subproblem: (2, 4)

S[2, 4] = (B,C,D)

P [2, 4] = (0.02, 0.3, 0.02, 0.1, 0.05, 0.2, 0.06)

26 / 34



Break Up to Subproblem

Using xk as root, break up one problem into two subproblems:
S[i, k − 1], P [i, k − 1]

S[k + 1, j], P [k + 1, j]

Example. Choose node B as root, break up the original problem
into the following two subproblems:
Subproblem: (1, 1)

S[1, 1] = (A), P [1, 1] = (0.04, 0.1, 0.02)

Subproblem: (3, 5)

S[3, 5] = (C,D,E),
P [3, 5] = (0.02, 0.1, 0.05, 0.2, 0.06, 0.1, 0.01)

B

A C D E

27 / 34



Probability Sum of Subproblem

For subproblem S[i, j] and P [i, j], the probability sum in P [i, j]
(including elements and intervals) is:

w[i, j] =

j∑
s=i−1

as +

j∑
t=i

bt

Example of subproblem (2, 4)

S[2, 4] = (B,C,D)

P [2, 4] = (0.02, 0.3, 0.02, 0.1, 0.05, 0.2, 0.06)

w[2, 4] = (0.3+0.1+0.2)+(0.02+0.02+0.05+0.06) = 0.75

28 / 34



Optimized Function

Optimized function OPT(i, j): the optimal average compare times
of subproblem (i, j) for S[i, j], P [i, j].
Parameterized optimized function. OPTk(i, j): optimal average
compare times with xk as root
Initial values: OPT(i, i− 1) = 0 for i = 1, 2, . . . , n, n+ 1
corresponds to empty subproblem.

Example: S = (A,B,C,D,E)

1 choose A as root (k = 1), yield subproblem (1, 0) and (2, 5),
(1, 0) is an empty subproblem: corresponding to S[1, 0],
OPT(1, 0) = 0

2 choose E as root (k = 5), yield subproblem (1, 4) and (6, 5),
(6, 5) is an empty subproblem: corresponding to S[6, 5],
OPT(6, 5) = 0

29 / 34



Iterate Relation for Optimized Function

OPT(i, j) = min
i≤k≤j

{OPTk(i, j)}, 1 ≤ i ≤ j ≤ n

= min
i≤k≤j

{OPT(i, k − 1) + OPT(k + 1, j) + w[i, j]}

xk

xi, . . . , xk−1 xk+1, . . . , xj

the depth of all nodes in left subtree and right subtree
increase by 1

w[i, k − 1] + bk + w[k + 1, j] = w[i, j]

30 / 34



Proof of OPTk(i, j)

OPTk(i, j)

= (OPT(i, k − 1) + w[i, k − 1]) + (OPT(k + 1, j) + w[k + 1, j]) + bk

= (OPT(i, k − 1) + OPT(k + 1, j)) + (w[i, k − 1] + bk + w[k + 1, j])

= (OPT(i, k − 1) + OPT(k + 1, j))

+

(
k−1∑

s=i−1

as +

k−1∑
t=i

bt

)
+ bk +

(
j∑

s=k

as +

j∑
t=k+1

bt

)

= (OPT(i, k − 1) + OPT(k + 1, j)) +

j∑
s=i−1

as +

j∑
t=i

bt //simplify

= OPT(i, k − 1) + OPT(k + 1, j) + w[i, j]

31 / 34



Pseudocode

Computation order: the size of subtree grows from 1 to n

Algorithm 4: BinarySearchTree(S, P, n)
1: OPT(i, i− 1)← 0 for all i ∈ [1, n+ 1];
2: OPT(i, j)← +∞ for all i ≤ j;
3: for ℓ← 1 to n do //size of subproblem
4: for i = 1 to n− ℓ+ 1 do //left boundary i
5: j ← i+ ℓ− 1 //right boundary j;
6: for k ← i to j do //try all split position
7: t← OPT(i, k − 1) + OPT(k + 1, j) + w[i, j];
8: if t < OPT(i, j) then
9: OPT(i, j)← t, s(i, j) = k //update

10: end
11: end
12: end
13: end

32 / 34



Demo

OPT(i, j) = min
i≤k≤j

{OPT(i, k − 1) + OPT(k + 1, j) + w[i, j]}

for 1 ≤ i ≤ j ≤ n

OPT(i, i− 1) = 0, i = 1, 2, . . . , n, n+ 1

B 0.3

A0.1 D 0.2

C
0.1

E 0.1
L0

0.04

L1

0.02 L2

0.02

L3

0.05

L4

0.06

L5

0.01

choose B as root, k = 2
OPT(1, 1) = 0.16
OPT(3, 5) = 0.88
OPT(3, 3) = 0.17
OPT(5, 5) = 0.17
w[3, 5] = 0.54

OPT(1, 5) =1 + min
k∈[5]
{OPT(1, k − 1),OPT(k + 1, 5)}

=1 + (OPT(1, 1) + OPT(3, 5)) = 1 + (0.16 + 0.88) = 2.04

33 / 34



Complexity Analysis

OPT(i, j) = min
i≤k≤j

{OPT(i, k − 1) + OPT(k + 1, j) + w[i, j]}

for 1 ≤ i ≤ j ≤ n

OPT(i, i− 1) = 0, i = 1, 2, . . . , n, n+ 1

The number of (i, j) combination is O(n2)

For each OPT(i, j), computation requires computing k terms and
finding min. The cost of each term computation is constant time.

Time complexity: T (n) = O(n3)

Space complexity: S(n) = O(n2)

34 / 34


	Chain Matrix Multiplication
	Optimal Binary Search Tree

